Monotonicity patterns and functional inequalities for classical and generalized Wright functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fejér Inequalities for Wright-convex Functions

In this paper, we establish several inequalities of Fejér type for Wrightconvex functions. Fejér Inequalities for Wright-convex Functions Ming-In Ho vol. 8, iss. 1, art. 9, 2007

متن کامل

Inequalities and monotonicity of ratios for generalized hypergeometric function

Abstract. We find two-sided inequalities for the generalized hypergeometric function with positive parameters restricted by certain additional conditions. Our lower bounds are asymptotically precise at x = 0, while the upper bounds are either asymptotically precise or at least agree with q+1Fq((aq+1), (bq);−x) at x = ∞. Inequalities are derived as corollaries of a theorem asserting the monotony...

متن کامل

Monotonicity, convexity, and inequalities for the generalized elliptic integrals

We provide the monotonicity and convexity properties and sharp bounds for the generalized elliptic integrals [Formula: see text] and [Formula: see text] depending on a parameter [Formula: see text], which contains an earlier result in the particular case [Formula: see text].

متن کامل

Generalized additive functional inequalities in Banach algebras

Using the Hyers-Ulam-Rassias stability method, weinvestigate isomorphisms in Banach algebras and derivations onBanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)|  le  |f(alpha x+ beta y+gamma z)| .end{eqnarray}Moreover, we prove the Hyers-Ulam-Rassias stability of homomorphismsin Banach algebras and of derivations on Banach ...

متن کامل

Inequalities and monotonicity properties for zeros of Hermite functions

We study the variation of the zeros of the Hermite function Hλ(t) with respect to the positive real variable λ. We show that, for each nonnegative integer n, Hλ(t) has exactly n + 1 real zeros when n < λ ≤ n + 1 and that each zero increases from −∞ to ∞ as λ increases. We establish a formula for the derivative of a zero with respect to the parameter λ; this derivative is a completely monotonic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2019

ISSN: 1331-4343

DOI: 10.7153/mia-2019-22-61